(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(s(x), y) → +(x, s(y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(0, z0) → z0
+(s(z0), z1) → s(+(z0, z1))
+(s(z0), z1) → +(z0, s(z1))
Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
S tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
K tuples:none
Defined Rule Symbols:
+
Defined Pair Symbols:
+'
Compound Symbols:
c1, c2
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
We considered the (Usable) Rules:none
And the Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+'(x1, x2)) = [4]x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(s(x1)) = [4] + x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(0, z0) → z0
+(s(z0), z1) → s(+(z0, z1))
+(s(z0), z1) → +(z0, s(z1))
Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
S tuples:none
K tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
Defined Rule Symbols:
+
Defined Pair Symbols:
+'
Compound Symbols:
c1, c2
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))